Abstract

In this study, the performance of a wave energy converter (WEC) rotor under regular and irregular wave conditions was investigated using 3D nonlinear numerical models. Factors such as the power take-off (PTO) load torque, wave periods, spacing of multiple WEC rotors, and wave steepness were analyzed. Two models were employed: a weakly nonlinear model formulated by incorporating the nonlinear restoring moment and Coulomb-type PTO load torque based on the potential flow theory, and a fully nonlinear model based on computational fluid dynamics. The results show that the average power estimated by both numerical models is consistent, with a wave steepness of 0.03 for the range of one-way and two-way PTO load torques, except for the deviations observed in the long range of the one-way PTO load torque. Furthermore, the average power of the WEC rotor under the applied PTO load torque exhibits a quadratic dependency, regardless of the wave steepness. In addition, adopting a one-way PTO load torque was more efficient than adopting a two-way PTO load torque. Therefore, the fully nonlinear model demonstrated its ability to handle a high degree of nonlinearity, surpassing the limitations of the weakly nonlinear model, which was limited to moderate wave steepness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call