Abstract

The cracking behaviours of reinforced-concrete (RC) ties are investigated by conducting virtual experiments using non-linear finite-element analysis. The assumptions in the model are verified by benchmarking the classical experiments of B. Bresler and V. V. Bertero as conducted in 1968 and P. J. Yannopoulos, conducted in 1989, which shows good agreement in the comparison of steel strains, development of crack widths and crack spacing. Furthermore, virtual experiments on four different RC ties show that the size of the cover and not the bar diameter governs the crack spacing and thus implicitly the crack width. An increase of the bar diameter has a beneficial effect in reducing the steel stress and the associated steel strains, which in turn reduces the crack width. Finally, a single bond–slip curve is sufficient in describing the average bond transfer of an arbitrary RC tie.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.