Abstract

In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional investigation was performed by means of the finite volume method. The numerical grid was developed by the multiblock technique. The turbulence phenomenon was addressed by the RNG k-e model. Profiles of the axial, tangential and radial velocities in the combustion chamber were outlined. The map of the predicted axial velocity in the combustion chamber was compared with a map of the experimental axial velocity. The internal space of the furnace was found to be partially filled with a reverse flow that extended around the longitudinal axis. A swirl number profile along the furnace length is presented and shows an unexpected increase in the swirl in the combustion chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.