Abstract
Abstract Nine clouds are simulated by perturbing Florida Area Cumulus Experiment (FACE) field soundings employing the Colorado State University cloud model. After a cloud similar in size to the one observed is initiated, glaciation is simulated in experiments designed to study the mechanisms by which glaciation is communicated to the subcloud boundary layer. Numerical model results show that the vertical pressure mechanism consisting of hydrostatic and dynamic pressure gradient force and “pressure buoyancy” is present, as is the downdraft mechanism, but they are secondary to loading, temperature buoyancy, water vapor buoyancy and the horizontal dynamic forces on the scale of a single deep convective cloud. The communication mechanism that has the most sustained and coherent influence upon the subcloud layer is the settling and evaporation of precipitation. A clear implication of this study to weather modification is that for dynamic seeding to have a significant influence upon the upscale growth of a clou...
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have