Abstract

Magnetic nanoparticles hyperthermia is a new and promising cancer treatment method. Injection strategies are one of the determining factors in the success of the treatment. This study is a numerical investigation into the injection methods of MNPs hyperthermia. In order to have a realistic tumor morphology and vascularity, a model of Lower Limb tumor was constructed from the CT images. The finite element method was used to solve the problem. This study includes fluid flow in capillaries and inside the porous tissue of the tumor, mass transfer from the capillaries into the tumor tissue, inside the tumor tissue, and from the tumor tissue into the capillaries, and finally heat transfer across the tumor. Finally, tissue damage was calculated in order to evaluate the performance of each method. Results of intravenous injection with single point intratumoral injections were compared here. The results of this study show that intravenous injection yields more homogenous MNPs concentration and temperature distribution, while MNPs concentration and temperature increase in direct injection was limited in a small area around the injection point. Results of the current research suggest that damage to tissue from the hyperthermia with intravenous injection is much more significant compared to direct injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call