Abstract

A numerical study of melting of Lauric acid in a vertical rectangular cross-section enclosure was performed with FLUENT 18.2. The enclosure was subject to a constant heat flux on one side of 500, 750 and 1000 W/m2. For model validation purposes simulations were initially performed of experimental systems in the literature with predicted values compared to experimental measurements. Predictions indicate that during the initial stage of melting, conduction is the dominant mode of heat transfer, subsequently replaced by convection when there is sufficient liquid PCM. The simulations show that as the magnitude of heat flux is increased, average wall temperature increases and melting time reduces. The predicted results indicated that melting time decreases by 28.5 % as the wall flux increases by 50 % from 500 to 750 W/m2. The time required for melting reduces by about 50% when the wall heat flux is increased from 500 to 1000 W/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call