Abstract

This paper introduces a computationally efficient data assimilation scheme based on Gaussian quadrature filtering that potentially outperforms current methods in data assimilation for moderately nonlinear systems. Moderately nonlinear systems, in this case, are systems with numerical models with small fourth and higher derivative terms. Gaussian quadrature filters are a family of filters that make simplifying Gaussian assumptions about filtering pdfs in order to numerically evaluate the integrals found in Bayesian data assimilation. These filters are differentiated by the varying quadrature rules to evaluate the arising integrals. The approach we present, denoted by Assumed Gaussian Reduced (AGR) filter, uses a reduced order version of the polynomial quadrature first proposed in Ito and Xiong [2000. Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Control. 45, 910–927]. This quadrature uses the properties of Gaussian distributions to form an effectively higher order method increasing its efficiency. To construct the AGR filter, this quadrature is used to form a reduced order square-root filter, which will reduce computational costs and improve numerical robustness. For cases of sufficiently small fourth derivatives of the nonlinear model, we demonstrate that the AGR filter outperforms ensemble Kalman filters (EnKFs) for a Korteweg-de Vries model and a Boussinesq model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.