Abstract
We are concerned with the Hamilton-Jacobi equation related to the infinite horizon problem of deterministic control theory. Approximate solutions are constructed by means of a discretization in time as well as in the state variable and we prove that their rate of convergence to the viscosity solution is of order 1, provided a semiconcavity assumption is satisfied. A computational algorithm, originally due to R. Gonzales and E. Rofman, is adapted and reformulated for the problem at hand in order to obtain an error estimate for the numerical approximate solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.