Abstract
It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are yet to be adequately utilized. It is an effective method to employ machine learning to perform forecasts. A long short term memory (LSTM) neural network is trained based on the typhoon observations during 1949–2011 in China’s Mainland, combined with big data and data mining technologies, and a forecast model based on machine learning for the prediction of typhoon tracks is developed. The results show that the employed algorithm produces desirable 6–24 h nowcasting of typhoon tracks with an improved precision.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have