Abstract

The development of multivalent cation based rechargeable devices have attracted increased interest because that one mole of multivalent ion can contribute double (for M2+) or triple (for M3+) electrons than monovalent ion (M+). Recently, multivalent cation based battery systems (e.g. Mg2+ and Al3+ batteries) have been widely investigated, however, less attention were paid on multivalent cation based supercapacitors and especially hybrid supercapacitors. Herein, we demonstrate a Zn-ion based hybrid supercapacitor (Zn-HSC) through directly designing Zn foil as both anode and current collector, and bio-carbon derived porous material as the cathode. The bivalent nature and high abundance of zinc can enable the Zn-HSC to achieve high energy density with low cost. After optimization, this Zn-HSC demonstrated superior electrochemical performances such as high discharge capacitance (170Fg−1 at 0.1Ag−1), good rate performance (~ 85% capacitance retention at 2Ag−1), high energy density (52.7Whkg−1 at 1725Wkg−1 based on the weight of active materials), and excellent cycling stability with 91% capacitance retention after 20,000 cycles at 2Ag−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.