Abstract
BackgroundGiven the continued successes of the world’s lymphatic filariasis (LF) elimination programs and the growing successes of many malaria elimination efforts, the necessity of low cost tools and methodologies applicable to long-term disease surveillance is greater than ever before. As many countries reach the end of their LF mass drug administration programs and a growing number of countries realize unprecedented successes in their malaria intervention efforts, the need for practical molecular xenomonitoring (MX), capable of providing surveillance for disease recrudescence in settings of decreased parasite prevalence is increasingly clear. Current protocols, however, require testing of mosquitoes in pools of 25 or fewer, making high-throughput examination a challenge. The new method we present here screens the excreta/feces from hundreds of mosquitoes per pool and provides proof-of-concept for a practical alternative to traditional methodologies resulting in significant cost and labor savings.Methodology/Principal FindingsExcreta/feces of laboratory reared Aedes aegypti or Anopheles stephensi mosquitoes provided with a Brugia malayi microfilaria-positive or Plasmodium vivax-positive blood meal respectively were tested for the presence of parasite DNA using real-time PCR. A titration of samples containing various volumes of B. malayi-negative mosquito feces mixed with positive excreta/feces was also tested to determine sensitivity of detection. Real-time PCR amplification of B. malayi and P. vivax DNA from the excreta/feces of infected mosquitoes was demonstrated, and B. malayi DNA in excreta/feces from one to two mf-positive blood meal-receiving mosquitoes was detected when pooled with volumes of feces from as many as 500 uninfected mosquitoes.Conclusions/SignificanceWhile the operationalizing of excreta/feces testing may require the development of new strategies for sample collection, the high-throughput nature of this new methodology has the potential to greatly reduce MX costs. This will prove particularly useful in post-transmission-interruption settings, where this inexpensive approach to long-term surveillance will help to stretch the budgets of LF and malaria elimination programs. Furthermore, as this methodology is adaptable to the detection of both single celled (P. vivax) and multicellular eukaryotic pathogens (B. malayi), exploration of its use for the detection of various other mosquito-borne diseases including viruses should be considered. Additionally, integration strategies utilizing excreta/feces testing for the simultaneous surveillance of multiple diseases should be explored.
Highlights
Spanning 73 countries and territories and placing an estimated 1.39 billion individuals at risk of infection, lymphatic filariasis (LF) presents a considerable risk to global health [1]
As many countries reach the end of their LF mass drug administration programs and a growing number of countries realize unprecedented successes in their malaria intervention efforts, the need for practical molecular xenomonitoring (MX), capable of providing surveillance for disease recrudescence in settings of decreased parasite prevalence is increasingly clear
Given the successes of tropical disease elimination programs, including many lymphatic filariasis and malaria elimination efforts, parasite levels in many locations are declining. This decrease in prevalence requires the sampling of increased numbers of vectors for disease surveillance and recrudescence monitoring
Summary
Spanning 73 countries and territories and placing an estimated 1.39 billion individuals at risk of infection, lymphatic filariasis (LF) presents a considerable risk to global health [1]. Lessons learned as a result of LF elimination efforts have shown that the cessation of MDA, recommended after the successful passing of a transmission assessment survey [14], results in an additional set of programmatic challenges Foremost in such post-intervention settings is the issue of post-MDA surveillance, as vigilant monitoring is required to ensure that recrudescence of disease has not occurred [15]. This monitoring is costly and current efforts for LF are centered upon the periodic sampling of the human population in order to examine circulating levels of filarial antigen [16,17]. The new method we present here screens the excreta/feces from hundreds of mosquitoes per pool and provides proofof-concept for a practical alternative to traditional methodologies resulting in significant cost and labor savings
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have