Abstract

The 101-channel full-waveform hyperspectral LiDAR (FWHSL) is able to simultaneously obtain geometric and spectral information of the target, and it is widely applied in 3D point cloud terrain generation and classification, vegetation detection, automatic driving, and other fields. Currently, most waveform data processing methods are mainly aimed at single or several wavelengths. Hidden components are revealed mainly through optimization algorithms and comparisons of neighbor distance in different wavelengths. The same target may be misjudged as different ones when dealing with 101 channels. However, using the gain decomposition method with dozens of wavelengths will change the spectral intensity and affect the classification. In this paper, for hundred-channel FWHSL data, we propose a method that can detect and re-decompose the channels with outliers by checking neighbor distances and selecting specific wavelengths to compose a characteristic spectrum by performing PCA and clustering on the decomposition results for object identification. The experimental results show that compared with the conventional single channel waveform decomposition method, the average accuracy is increased by 20.1%, the average relative error of adjacent target distance is reduced from 0.1253 to 0.0037, and the degree of distance dispersion is reduced by 95.36%. The extracted spectrum can effectively characterize and distinguish the target and contains commonly used wavelengths that make up the vegetation index (e.g., 670 nm, 784 nm, etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.