Abstract

Water soluble porphyrins have many perfect analytical figures of merit. A water-soluble sulfonated porphyrin (H2TEHPPS) was used to build a novel platform for sensitive assays of hydrogen peroxide and glucose based on the different effects of Fe(2+) and Fe(3+) on H2TEHPPS. H2O2 or Fe(2+) alone cannot induce a fluorescence change in H2TEHPPS, but Fe(3+) can quench the fluorescence of H2TEHPPS significantly. Interestingly, glucose is oxidized to gluconolactone by GOD and generates an equivalent hydrogen peroxide, and the produced H2O2 also oxidizes Fe(2+) to Fe(3+) and causes the fluorescence quenching of H2TEHPPS. According to this, a sensitive sensor for hydrogen peroxide and glucose has been demonstrated, which can determine H2O2 and glucose in a relative simple and sensitive way. The detection limits were 1.3 × 10(-7) M and 3.2 × 10(-7) M for H2O2 and glucose, respectively. In addition, the glucose in serum samples was determined successfully using this sensing platform. It is also noteworthy that H2O2 can be released in almost all oxidations catalyzed by oxidases, which suggests that this newly proposed H2O2 probe can be readily extended to sense other oxidases and their specific substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.