Abstract

The synthesis of a polyaniline–clay nanocomposite (PAniC NC) was achieved using the in situ polymerization of aniline in a Cloisite® 30B nanoclay suspension in a supercritical CO2 (Sc-CO2) medium. The interfacial co-polymerization of aniline (ANI) and m-aminobenzenesulfonic acid (SAN) in the presence of Cloisite® 30B was performed in Sc-CO2/water to produce the SPANI-clay NC. The NC was then mixed with a water-based hardener. This water-based composite is developed with the goal of reducing environmental and health risks. The use of this Sc-CO2 technique produced a composite material that resulted in the enhanced protection of carbon steel against corrosion when compared to a similar composite synthesized under atmospheric conditions. The materials obtained were characterized using UV/visible spectroscopy, X-ray powder diffraction and scanning and transmission electron microscopy. The anti-corrosion performance and the adhesion properties of these coatings were evaluated using standardized tests. Electrochemical impedance spectroscopy was also used to determine the electrochemical properties of these anti-corrosion coatings. Better exfoliation and dispersion of the clay was achieved using the Sc-CO2 medium resulting in superior performances in corrosion and electrochemical tests because of the higher level of intercalation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call