Abstract

Ultraviolet (UV)-based advanced oxidation processes (AOPs) are increasingly used for the degradation of micropollutants in water and wastewater. This study reports a novel UVA/chlorine dioxide (ClO2) AOP based on the photolysis of ClO2 using energy-efficient UV radiation sources in the UVA range (e.g., UVA-LEDs). At a ClO2 dosage of 74 μM (5.0 mg L-1 as ClO2) and a UV fluence at 47.5 mJ cm-2, the UVA365/ClO2 AOP generated a spectrum of reactive species, including chlorine oxide radicals (ClO•), chlorine atoms (Cl•), hydroxyl radicals (HO•), and ozone at a concentration of ∼10-13, ∼10-15, ∼10-14, and ∼10-7 M, respectively. A kinetic model to simulate the reactive species generation in the UVA365/ClO2 AOP was established, validated against the experimental results, and used to predict the pseudo-first-order rate constants and relative contributions of different reactive species to the degradation of 19 micropollutants in the UVA365/ClO2 AOP. Compared to the well-documented UVC254/chlorine AOP, the UVA365/ClO2 AOP produced similar levels of reactive species at similar oxidant dosages but was much less pH-dependent and required much lower energy input, with much lower formation of chloro-organic byproducts and marginal formation of chlorite and chlorate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.