Abstract
Change Detection (CD) problem from remotely sensed images is a popular topic among researchers. Because of the diversity in the problem of change detection and the complexity of the study areas it cannot be claimed that there is an appropriate and prevalent algorithm which is more effective for different types of the case study. As a fundamental investigation, it is critical to recognize the weaknesses of the state of artworks in change detection. Also, those examined weaknesses have to be improved aptly to develop a new strong method. This paper presents a thresholding algorithm improved by the Genetic Algorithm (GA) in CD problems, which focuses on minimizing a novel cost function. The suggested cost function can be adopted for local and global change variations in difference images without any prior assumptions. The presented algorithm was tested on two data sets (i.e., Alaska region and Uremia Lake) to validate its effectiveness. Experimental results demonstrated that the proposed algorithm in this work has improved the accuracy of change detection (changed pixel accuracy term) in the Alaska region about 8%–12% and also in Uremia Lake approximately between 8%–13% in comparison with other conventional methods including Fuzzy C- Means (FCM), Otsu thresholding, K-Means, and K-Medoid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.