Abstract
An unsupervised change-detection problem is formulated as a binary classification problem corresponding to the change and no change areas. This paper proposes a novel unsupervised object-oriented change detection method based on neighborhood correlation images (NCIs) and k-means clustering for high-resolution remote sensing images. We tested our proposed method in two study areas of Beijing with RapidEye images and compared it with three other popular change detection methods based on different images: change vector analysis (CVA), principal component analysis (PCA), and multivariate alteration detection (MAD). The results indicate that our method has the highest overall accuracy (90.80% in Shunyi District, Beijing and 90.40% in Daxing District, Beijing) and Kappa coefficient (0.7922 in Shunyi District, Beijing and 0.7796 in Daxing District, Beijing). In addition, the McNemar test indicates that our method is robust and stable across different study areas. We concluded that the object-oriented NCIs method outperforms traditional difference images (CVA, PCA, and MAD) in unsupervised change detection. The experimental results demonstrate the effectiveness of the proposed approach in solving the problem of unsupervised change detection for high-resolution images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.