Abstract

Operating deflection shape analysis allows investigating the dynamic behaviour of a structure during operation. It normally requires simultaneous, multi-point measurements to capture the response from an unknown excitation source (unknown-input and multiple-output), which can complicate its usage for structures without ease of access. A novel vibration pattern testing method is proposed based on a roving continuous random excitation employing a small robotic Hexbug device and a single-point measurement. The Hexbug introduces a random excitation in consecutive locations while roaming over the structure. The resulting multi-modal, time and location dependent response of the system is captured in a single location, and then analysed with a newly developed method based on empirical wavelet transform, multiscale morphological filtering and optimization to extract the excited vibration patterns. The efficiency of the proposed method is experimentally demonstrated on a free–free and a cantilevered beam with comparison to mode shapes extracted by hammer test. The validation highlights its ability to extract several vibration patterns from a long slender structure with good accuracy and robustness, with the general ability to expand the usability of an operating deflecting shape analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.