Abstract

ABSTRACTA three-dimensional (3-D) overhead crane is a complicated nonlinear underactuated mechanical system, for which high-speed positioning and anti-sway control are the kernel objective. Existing trajectory-based methods for 3-D overhead cranes focus on combining efficient and smooth trajectories with anti-sway tracking controllers without regard for payload motion; moreover, the exact value of plant parameters is required for accurate compensation during the control process. Motivated by these facts, we present a two-step design tracking strategy which consists of a trajectory planning stage and an adaptive tracking control design stage for 3-D overhead cranes. As shown by Lyapunov techniques and Barbalat's Lemma, the proposed controller guarantees asymptotic swing elimination and trolley positioning result in the presence of system uncertainties including unknown parameters and external disturbances. Simulation results also showed the applicability of the proposed method with good robustness against parameter uncertainties and external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.