Abstract

In quasi-brittle materials, such as reinforced concrete, localisation of initially diffuse cracking evolving in localised cracking patterns consists of a numerically challenging task. With conventional iterative methods, convergence of the numerical solution scheme to model crack localisation is often difficult to obtain. On the other hand, conventional total approaches, such as the Sequentially Linear Approach, although robust, fail to approximate properly the underlying material law. In the present work, a new model is introduced, designated the Total Iterative Approach, in which the internal damage variables are updated iteratively. It is found that this approach is robust, allows for the correct approximation of the material law and is a powerful tool for the analysis of softening behaviour. Some examples are presented to illustrate the performance of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.