Abstract
Despite industrial bio-manufacturing progress using Bacillus licheniformis, the absence of a well-characterized toolbox allowing precise regulation of multiple genes limits its expansion for basic research and application. Here, a novel gene expression toolbox (GET) was developed for precise regulation of gene expression and high-level production of 2-phenylethanol. Firstly, we established a novel promoter core region mosaic combination model to combine, characterize and analyze different core regions. Characterization and orthogonal design of promoter ribbons allowed convenient construction of an adaptable and robust GET, gene gfp expression intensity was 0.64%–16755.77%, with a dynamic range of 2.61 × 104 times, which is the largest regulatory range of GET in Bacillus based on modification of promoter P43. Then we verified the protein and species universality of GET using different proteins expressed in B. licheniformis and Bacillus subtilis. Finally, the GET for 2-phenylethanol metabolic breeding, resulting in a plasmid-free strain producing 6.95 g/L 2-phenylethanol with a yield and productivity of 0.15 g/g glucose and 0.14 g/L/h, respectively, the highest de novo synthesis yield of 2-phenylethanol reported. Taken together, this is the first report elucidating the impact of mosaic combination and tandem of multiple core regions to initiate transcription and improve the output of proteins and metabolites, which provides strong support for gene regulation and diversified product production in Bacillus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.