Abstract

Future space telescopes, such as those proposed for the Far-infrared Surveyor Mission, are expected to employ actively cooled optical arrays with a similar overall surface area compared to the James Webb Space Telescope. Therefore, there is a need for a cryogenic cooling system with a thermal bus architecture that can distribute cooling to these large optical arrays. Recent experimental research of helium Pulsating Heat Pipes (PHPs) has shown that helium PHPs can transfer heat over long distances (on the order of 2 m) with high efficiency, and also have the ability to act as a passive thermal switch upon the removal of the cooling source. PHPs’ high thermal performance, passive switching capability, low mass, and ease of manufacturing make them an appealing option compared to high-purity metal straps for a thermal bus architecture on large cryogenic space telescopes. A novel architecture for the thermal control of optical arrays is proposed utilizing unique configurations of helium pulsating heat pipes that minimize mass, maximize thermal performance, and reduce the risk of mission failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call