Abstract
Several models for the daughter bubble/droplet size distribution are reviewed and a detailed discussion is given to get a better understanding of the daughter size distribution. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, based on an eddy-bubble/droplet collision method, is developed. It takes into account the energy distribution of turbulent eddies, effect of capillary pressure and surface energy increase during bubble/droplet breakup. An increase in the mother bubble/droplet size and energy dissipation rate increases the probability of unequal breakup. The model prediction is in good agreement with experimental results and the underlying physical situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.