Abstract

In this paper, we propose a novel planar semiconductor metamaterial which consists of two H-shape structures which are nested together and composed of InSb deposited on a thin quartz substrate. The two H-shape structures serve as the bright modes and are exited strongly by the incident wave and interact with each other. This coupling leads to a powerful plasmonically induced transparency (PIT) effect at terahertz frequencies. This scheme provides a way to achieve slow light, and the corresponding group index can reach a value of 1300. We calculated group velocity dispersion (GVD) and saw this structure was a low group velocity dispersion (LGVD) system. Therefore, the proposed structure will be useful in designing slow-light devices, optical buffers, delay lines, and ultra-sensitive sensors. We also showed that the proposed design is tunable, namely changes in geometric parameters and type of semiconductor can largely change the group index. In addition, we considered another application for our design that is a thermal dual-band terahertz metamaterial modulator and numerically obtained frequency and amplitude modulation depth, tunability bandwidth, and loss for this device. We obtained an amplitude modulator depth of 99.7 % and a frequency modulator depth of 47 % that verified this structure can be used in wireless communication and encode information systems in the THz regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call