Abstract

The slow light propagation in a line waveguide in the two-dimensional triangular photonic crystal has been numerically studied, based on which a wideband photonic crystal waveguide with low group-velocity and low dispersion is proposed. The numerical simulation analysis shows that it is possible to maximize the group index and minimize the group-velocity dispersion in wide bandwidth by increasing the radius of the basic air hole and changing the position of the first two rows of air holes in photonic crystal waveguides. Such a photonic crystal waveguide exhibits low group velocity and low group-velocity dispersion over a broad wavelength range. A larger group index-bandwidth product is achieved in this type of waveguide structure. The numerically computed results present the normalized bandwidth as 0.32%, 0.48% and 0.642% corresponding to the group index of 85, 58 and 45, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call