Abstract

Aimed at improving the bias stability of Fiber-Optic Gyroscope (FOG)-based inertial navigation systems in environments of various ambient temperatures, a novel temperature-compensation method based on a correlation analysis of the same batch of FOGs is proposed. The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs. Then, the correlation information of the multiple FOGs was used to analyze the feasibility of the method. Eventually, the same residual error of the FOGs was compensated via the simple piecewise linear models. The experimental results indicate that excellent compensation effects for both high- and low-accuracy FOGs are achieved using the proposed method. Specifically, the accuracies of high-accuracy FOGs are improved by approximately 33.9%, 20%, and 31.2%, while those of low-accuracy FOGs are improved by approximately 39.1%, 20.8%, and 26.1%. The method exhibits the merits of simplicity, validity, and stability, and thus is expected to be widely used in engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.