Abstract
The purpose of this study was to investigate the feasibility of using in vivo tissue-engineered (TE) bone to repair boxlike mandibular defect and support dental implant, and then provide experimental evidence for the future application of the novel technique in the clinical setting. The TE bone graft was constructed in vivo by implanting osteoinductive calcium phosphate (Ca-P) ceramics in the femoral muscles of dog for 8 weeks, then was transplanted to repair the autogeneic boxlike bone defect site created in one side of the mandible and simultaneously support a dental implant, while in the opposite side of the mandibular defect, the same ceramic was used directly as control. 8 weeks after transplantation, samples were harvested for analysis. The results demonstrated that the technique of in vivo tissue engineering improved the mechanical and biologic properties of ceramics significantly. After transplantation, the in vivo TE ceramic-bone grafts were involved in bone metabolism of the host and fused well with the host bone. The dental implants were stable and had been integrated with both TE bone grafts and autologous bone. Therefore, it is feasible to construct a live bone graft with osteoinductive Ca-P ceramics in vivo, then repair a mandibular bone defect, and support a dental implant. In conclusion, in vivo TE bone is a promising technique for bone repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.