Abstract

This report describes the effect of periosteal-derived cells transfected with adenovirus-mediated bone morphogenetic protein-2 (BMP-2) on the repair of mandibular defects in rabbits. Periosteal-derived cells were transfected with a replication-defective adenoviral vector encoding BMP-2, and the expression of BMP-2 was examined in transfected cells using in situ hybridization and enzyme-linked immunosorbent assay. In addition, the proliferation ability and activity of alkaline phosphatase of transfected cells were examined using the 3-[4,5-dimethylthiazol-2-Yl]-2,5-diphenyltetrazolium bromide method and enzymology, respectively. In vitro critical-size defects (about 10 × 6 mm) were made bilaterally in each rabbit mandible, and individual sites were implanted with tissue-engineered bone modified with an adenovirus construct encoding the recombinant human BMP-2 gene (Ad-BMP-2), tissue-engineered bone without modification, single bioactive glass ceramic, or no implants (control). New bone formation was evaluated by histochemical stain. BMP-2 expression in the supernate of infected cells was detected from the first day after Ad-BMP-2 transfection and remained at a high level for at least 2 weeks. Alkaline phosphatase expression in transfected cells was significantly greater than in uninfected cells. The group of Ad-BMP-2-modified periosteal-derived cells formed more new bone than the other group at any time point. Gene-modified tissue-engineered bone grafts have greater osteogenic potential than single tissue-engineered bone and single bioactive glass ceramic graft. Ex vivo Ad-BMP-2 transfer to periosteal-derived cells can increase bone formation in critical-size bone defects. Further studies are needed to determine if modified engineered cells can be developed for safe and effective clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call