Abstract
Background:When inserting coils under stent deployment, a jailed microcatheter technique is typically applied as a first line approach. However, the trans cell approach might be required to achieve satisfactory complete occlusion. The trans cell approach occasionally ends in failure because the catheter cannot safely follow a proceeding guidewire into the aneurysm. Here, we report the new wireless trans cell approach (WTA), which allows feasible and safe catheter navigation through the stent strut into the aneurysm, without a proceeding guidewire.Methods:A straight tip microcatheter was used, and the tip was shaped as a very small bend of approximately 45°. The side aspect of the catheter tip exhibited a right angled edge, while the front aspect showed a round curve in the advancing direction. We compared the 45° microcatheter with a straight tip microcatheter using a silicon vascular model and then applied the WTA in a case of an unruptured basilar apex aneurysm.Results:Catheter navigation through the stent strut was smoother with the WTA than the conventional wire assisted approach. Our case of a basilar apex aneurysm was successfully treated with the dual catheter technique, which involved a jailed catheter and navigation using the WTA. After stent deployment from the right posterior cerebral artery to the basilar artery through the 45° microcatheter, the WTA was applied using the same catheter. No stress was detected during catheter navigation through the stent strut into the aneurysm.Conclusions:The WTA is associated with smoother catheter navigation compared with the conventional wire assisted approach in cases of a terminal type aneurysm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have