Abstract
We provide a method to grow self-aligned epitaxial MgO/Cu/MgO films on silicon substrates by pulsed laser deposition (PLD) technique. Here, a thin layer of Cu/Mg (Mg 5%) is deposited using a PLD over Si (100) specimens, followed by annealing at 500 °C in a controlled oxygen environment resulting in the segregation of Mg on either side of the copper film. Mg on the upper side of copper reacts with ambient oxygen and on the lower side with the adsorbed oxygen in the substrate to form layers of MgO. High-resolution transmission electron microscopy (HRTEM) measurements showed thin layers of MgO formed on either side of the copper films. The lower MgO layer acts as a diffusion barrier and inhibits the diffusion of Cu into the system while the upper MgO layer acts as a passivating layer and protects copper against oxidation. This approach can also be used to grow high quality epitaxial YBa 2Cu 3O 7− δ films with MgO acting as a buffer for the superconducting device applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have