Abstract

ABSTRACTThe present status of surface passivation research for III-V compound semiconductors utilizing a novel unique structure including a silicon interface control layer (Si ICL) is presented and discussed. The basic principle of passivation is to insert an ultrathin MBE-grown Si layer between the III-V compound semiconductor and a Si-based thick insulator so as to terminate the surface bonds of the III-V material with Si atoms and then to transfer Si-bonds smoothly to those of the Si based insulator. Based on the calculation of quantized levels in strained Si ICL, the passivation structure was optimized. Such a structure was realized by partial nitridation of Si ICL surface. In-situ surface characterization techniques including newly developed UHV contactless C-V technique, were used for optimization of each passivation step. Surface reconstruction of initial semiconductor surface was found to have a great influence on passivation. In the case of GaAs, the c(4×4) surface is preferable to the (2×4) surface. The novel process has realized the oxide-free surface passivation of InP with a Nssmin value of 2 × 1010 cm−2 eV−1. Furthermore, the novel passivation technique has been successfully applied to the fabrication of MISFETs and IGHEMTs, and the passivation of quantum structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.