Abstract
After myocardial infarction caused by a heart attack, endothelial cells need to be preserved in order to regenerate new capillaries. Moreover, sufficient mechanical support is necessary for the infarcted myocardium to pump the blood. Herein, we designed a novel substrate containing polyurethane (PU) nanofibrous layers and recombinant human erythropoietin (rhEPO)-loaded microparticles for both controlled releases of rhEPO and mechanical support of myocardium. In this system, the single-layer (SL) and double-layer (DL) PU nanofibers were electrospun, and then microparticles with different rhEPO:polyvinyl alcohol (PVA) ratios were electrosprayed on the layers. The in vitro release behavior of rhEPO from SL substrates was not satisfactory, and then the study focused on DL patches in which the release profile was in accordance with Korsmeyer-Peppas model. The release exponent of 0.89 for the DL PU/120PVA:1rhEPO represented zero-order release. The results inferred that these substrates possessed highly tailored mechanical properties; Young's modulus and ultimate tensile strength of the substrates were 74-172 kPa and 7.4-9.9MPa, respectively. The rhEPO release from the substrates was leading to the proper adhesion of endothelial cells and more than 95% cell viability. The results indicated that the patch of elastic nanofibers and microparticles offered a potential substrate for simultaneous rhEPO delivery to endothelial cells and also mechanically supporting the infarcted myocardium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have