Abstract

Mono-chrome phosphorescence Organic light emitting diodes (OLEDs) operated by organic thin-film transistors (OTFTs) with a 32×32 array are fabricated with a novel method, and the results reveal a fabulous demonstration. The later isolation, which segregated source/drain electrodes and an OLED cathode, was designed in our OTFT-OLED pixel. In the OTFT-OLED process; we used the polymer isolating layer which was deposited by spin coating and patterned by traditional photo-lithography before the organic semiconductor and OLED deposition. However, the residue polymer affect of OTFT electric properties which have poor mobility (5×10-4 cm2/V-s), a lower on/off ratio (~103), and a positive threshold voltage (4.5 V), and devices, have poor uniformity. Using UV-Ozone treatment could enhance OTFT mobility (2×10-2 cm2/V-s) and permit higher devices uniformity, but the threshold voltage would still have a positive 5.1 V. This threshold voltage was not a good operation mode for display application because this operation voltage was not fit for our driving systems. In order to overcome this problem, a new structure of OTFT-OLED pixel was designed and combined with a new-material isolating layer process. This new process could fabricate an OTFT-OLED array successfully and have a nice uniformity. After the isolating layer process, OTFT devices have a higher mobility (0.1×10-2 cm2/V-s), a higher on-off ratio (~107) a lower threshold voltage (-9.7 V), and a higher devices uniformity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call