Abstract

A laboratory experiment is suggested in which conditions similar to those in the plume ejecta from Enceladus and, perhaps, Europa are established. With the use of infrared spectroscopy and polarimetry, the experiment might identify possible biomarkers in differential measurements of water from the open ocean, hydrothermal vents, and abiotic water samples. Should the experiment succeed, large telescopes could be used to acquire sensitive infrared spectra of the plumes of Enceladus and Europa, as the satellites transit the bright planetary disks. The extreme technical challenges encountered in so doing are similar to those of solar imaging spectropolarimetry. The desired signals are buried in noisy data in the presence of seeing-induced image motion and a changing natural source. Some differential measurements used for solar spectropolarimetry can achieve signal-to-noise ratios of 105 even in the presence of systematic errors 2 orders of magnitude larger. We review the techniques and likelihood of success of such an observing campaign with some of the world's largest ground-based telescopes, as well as the long-anticipated James Webb Space Telescope. We discuss the relative merits of the new 4 m Daniel K. Inouye Solar Telescope, as well as the James Webb Space Telescope and larger ground-based observatories, for observing the satellites of giant planets. As seen from near Earth, transits of Europa occur regularly, but transits of Enceladus will begin again only in 2022. Key Words: Spectroscopy-Spectropolarimetry-Life origins. Astrobiology 17, 852-861.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call