Abstract

Simple, robust and novel analytical procedures were developed for the speciation of chromium by carrier element co-precipitation (CECP) and dispersive liquid–liquid microextraction (DLLME) coupled with microsample injection system–flame atomic absorption spectrophotometry (MIS–FAAS). Ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride and ethanol were used as chelating agent, extraction solvent and disperser solvent, respectively for the determination of Cr(VI) by DLLME. For total chromium, Cr(III) was oxidized by Ce(SO4)2 in acidic media (0.07 mol L−1 H2SO4) and the resulting solution was co-precipitated with APDC. The concentration of Cr(III) was estimated by determining the difference between the concentration of total chromium and that of Cr(VI). The maximum recovery of Cr(VI) was obtained with DLLME at optimal conditions of pH 3.0 , 0.25% APDC, 100 μL CCl4, 1.00 mL of CH3CH2OH and 0.01 mg L−1 Cr(VI). Whereas, the optimal conditions for CECP were 40 mL initial volume of water samples, 0.25% APDC, 0.02% Ce(SO4)2 and 0.10 mg L−1 Cr(VI) concentration. The limits of detection and enrichment factor of DLLME and CECP were [0.037 and 2.13] and [400 and 100] μg L−1, respectively with 40 mL initial volumes. The relative standard deviations (RSD, n = 6) were <4%. The proposed method was successfully applied to the chromium speciation at ultra-trace levels in natural drinking water, industrial effluents waste water and an exchangeable fraction of garden soil from Denizli. Moreover, the proposed methods compared well with the literature reported method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call