Abstract
Both population-based and family-based designs are commonly used in genetic association studies to identify rare variants that underlie complex diseases. For any type of study design, the statistical power will be improved if rare variants can be enriched in the samples. Family-based designs, with ascertainment based on phenotype, may enrich the sample for causal rare variants and thus can be more powerful than population-based designs. Therefore, it is important to develop family-based statistical methods that can account for ascertainment. In this paper, we develop a novel statistical method for rare-variant association studies in general pedigrees for quantitative traits. This method uses a retrospective view that treats the traits as fixed and the genotypes as random, which allows us to account for complex and undefined ascertainment of families. We then apply the newly developed method to the Genetic Analysis Workshop 19 data set and compare the power of the new method with two other methods for general pedigrees. The results show that the newly proposed method increases power in most of the cases we consider, more than the other two methods.
Highlights
There is increasing interest in detecting associations between rare variants and complex traits
Several statistical methods for detecting associations of rare variants were developed for population-based designs, including the cohort allelic sums test [2], the combined multivariate and collapsing method [1], the weighted sum statistic [3], the variable minor allele frequency threshold method [4], the adaptive sum test [5], the step-up method [6], the sequence kernel association test [7], and the test for optimally weighted combination of variants [8]
To analyze the sequencing data in general pedigrees provided by Genetic Analysis Workshop 19 (GAW19), we proposed a novel method to test rare-variant association in general pedigrees for quantitative traits
Summary
There is increasing interest in detecting associations between rare variants and complex traits. Statistical methods to detect common variant associations are well developed, these variant-by-variant methods may not be optimal for detecting associations with rare variants as a result of allelic heterogeneity as well as the extreme rarity of individual variants [1]. Several statistical methods for detecting associations of rare variants were developed for population-based designs, including the cohort allelic sums test [2], the combined multivariate and collapsing method [1], the weighted sum statistic [3], the variable minor allele frequency threshold method [4], the adaptive sum test [5], the step-up method [6], the sequence kernel association test [7], and the test for optimally weighted combination of variants [8]. Quite a few statistical methods for rarevariant association studies have been developed for family-based designs. The Author(s) BMC Proceedings 2016, 10(Suppl 7):
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have