Abstract

AbstractThis paper proposes a novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control (SMESC) without steady-state oscillation. In the sailing speed optimisation scheme, an initial sail angle of attack is first computed by a piecewise constant function in the feed forward block, which ensures a small deviation between sailing speed and the maximum speed. Second, the sailing speed approaches to maximum gradually by extremum search control (ESC) in the feedback block. In SMESC without steady-state oscillation, a switching law is designed to carry out the control transformation, so that the speed optimisation system carries out SMESC in the first convergence phase and ESC without steady-state oscillation in the second stability phase. This scheme combines the advantages of both control algorithms to maintain a faster convergence rate and to eliminate steady-state oscillation. Furthermore, the strict stability of the speed optimisation system is proved in this paper. Finally, we test a 12-m mathematical model of an unmanned sailboat in the simulation to demonstrate the effectiveness and robustness of this speed optimisation scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call