Abstract
Sparse signal is a kind of sparsematrices which can carry fault information and simplify the signal at the same time. This can effectively reduce the cost of signal storage, improve the efficiency of data transmission, and ultimately save the cost of equipment fault diagnosis in the aviation field. At present, the existing sparse decomposition methods generally extract sparse fault characteristics signals based on orthogonal basis atoms, which limits the adaptability of sparse decomposition. In this paper, a self-adaptive atom is extracted by the improved dual-channel tunable Q-factor wavelet transform (TQWT) method to construct a self-adaptive complete dictionary. Finally, the sparse signal is obtained by the orthogonal matching pursuit (OMP) algorithm. The atoms obtained by this method are more flexible, and are no longer constrained to an orthogonal basis to reflect the oscillation characteristics of signals. Therefore, the sparse signal can better extract the fault characteristics. The simulation and experimental results show that the self-adaptive dictionary with the atom extracted from the dual-channel TQWT has a stronger decomposition freedom and signal matching ability than orthogonal basis dictionaries, such as discrete cosine transform (DCT), discrete Hartley transform (DHT) and discrete wavelet transform (DWT). In addition, the sparse signal extracted by the self-adaptive complete dictionary can reflect the time-domain characteristics of the vibration signals, and can more accurately extract the bearing fault feature frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.