Abstract
Chronic inflammation is pathogenic and contributes to human diseases, causing a significant threat to public health. The NLR family pyrin domain-containing protein 3 (NLRP3) is the best-characterized factor regulating inflammation. Therefore, targeting NLRP3 has the potential to treat inflammatory diseases and improve human health. Lipopolysaccharide was used to induce inflammation in cell cultures. Lipopolysaccharide/d-galactosamine and dextran sulfate sodium salt were used to induce acute liver inflammation and ulcerative colitis respectively in C57BL/6J mice. Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the activation of the inflammatory response in cell cultures and in mice. JNUTS013, a novel sorbicillinoid compound recently synthesized by us, significantly inhibited inflammation both in cell cultures and in mouse models. Mechanistically, JNUTS013 induced proteasome-dependent degradation of NLRP3. Hence, it suppressed the formation of the NLRP3 inflammasome and the production of downstream inflammatory cytokines and chemokines. The inhibitory effect of JNUTS013 on NLRP3 protein expression was confirmed in mice. Importantly, JNUTS013 failed to ameliorate bowel inflammation in Nlrp3-/- knockout mice, supporting NLRP3 as the biological target by which JNUTS013 inhibits inflammation. Further studies revealed critical chemical moieties of JNUTS013 required for inducing NLRP3 degradation. This study identifies a novel compound JNUTS013 that inhibits inflammation through inducing NLRP3 protein degradation in vitro and in vivo, which not only supports the development of JNUTS013 as an anti-inflammation agent but also creates a new way for the treatmentofinflammation by chemically inducing NLRP3 degradation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have