Abstract

Exogenous hydrogen sulfide (H2S) is known to exert anti-inflammatory effects both in macrophages and in animal models. In this study, we first showed that NaHS caused a concentration dependent reduction in TNFα and IL-6 secretion in LPS-stimulated RAW264.7 macrophages in the absence of cell death. Thereafter, we screened a series of novel slow H2S donors for similar activity. One such compound, FW1256, concentration dependently decreased TNFα, IL-6, PGE2 and NO generation in LPS-stimulated RAW264.7 macrophages and BMDMs. FW1256 also significantly reduced IL-1β, COX-2 and iNOS mRNA and protein in LPS-stimulated RAW264.7 macrophages. Mechanistically, FW1256 decreased NFκB activation as evidenced by reduced cytosolic phospho-IκBα levels and reduced nuclear p65 levels in LPS-stimulated RAW264.7 macrophages treated with FW1256. Using a H2S fluorescent probe in FW1256-treated RAW264.7 macrophages, H2S release from FW1256 was apparent over a period of 24h in these cells. Moreover, the effect of FW1256 on TNFα and IL-6 by FW1256 in LPS-stimulated RAW264.7 macrophages was reversed by treatment with the H2S scavenger, vitamin B12a. FW1256 had no cytotoxic effect on LPS-stimulated RAW264.7 macrophages or BMDMs. In vivo, FW1256 administration also reduced IL-1β, TNFα, nitrate/nitrite and PGE2 levels in LPS-treated mice. We show here a novel slow H2S-releasing compound that exerts anti-inflammatory effects in macrophages and in vivo. FW1256 may be a useful tool to study the biological effects of exogenous H2S and could also have future therapeutic value in inflammatory conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call