Abstract
This paper considers a continuous sliding mode control for a class of nonlinear systems with uncertainties including both parameter variations and external disturbances. Under the framework of sliding mode and using the upper bounds of the uncertainties, the proposed controller is derived to guarantee the stability of an overall closed-loop system and ensure robustness against modelling errors, parameter uncertainties and external disturbances. As for chattering elimination in sliding mode control, a boundary layer around the sliding surface is used and the continuous control is applied within the boundary. Moreover, an extended schema of a higher-order sliding mode controller is developed in this paper as another solution to avoid the problem of chattering effect. Simulation results demonstrate the efficacy of the proposed control methodology to stabilise an inverted pendulum, which is a standard nonlinear benchmark system. The applicability of the proposed algorithm will be extended, via suitable modifications, to the case of multivariable nonlinear systems with uncertainties of more general type, covering a wide class of processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modelling, Identification and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.