Abstract
The objective of this study is to propose an accurate emotion recognition methodology. To this end, a novel fusion framework based on wavelet transform (WT), and matching pursuit (MP) algorithm was offered. Electrocardiogram (ECG) and galvanic skin response (GSR) of 11 healthy students were collected while subjects listened to emotional music clips. In both fusion techniques, Coiflet wavelet (Coif5 at level 14) was chosen as a wavelet family and MP dictionary, respectively. After employing the proposed fusion framework, some statistical measures were extracted. To describe emotions, three schemes were adopted: two-dimensional model (five classes), valence-(three classes), and arousal-(three classes) based emotion categories. Subsequently, the probabilistic neural network (PNN) was applied to classify affective states. The experiments indicate that the MP-based fusion approach outperform the wavelet-based fusion technique or methods using only ECG or GSR indices. Considering the proposed fusion techniques, the maximum classification rate of 99.64% and 92.31% was reached for the fusion methodology based on the MP algorithm (five classes of emotion) and wavelet-based fusion technique (three classes of valence), respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have