Abstract

Private comparison is the basis of many encryption technologies, and several related Quantum Private Comparison (QPC) protocols have been published in recent years. In these existing protocols, secret information is encoded by using conjugate coding or orthogonal states, and all users are quantum participants. In this paper, a novel semi-quantum private comparison scheme is proposed, which employs Bell entangled states as quantum resources. Two semi-quantum participants compare the equivalence of their private information with the help of a semi-honest third party (TP). Compared with the previous classical protocols, these two semi-quantum users can only make some particular action, such as to measure, prepare and reflect quantum qubits only in the classical basis {|0⟩,|1⟩} , and TP needs to perform Bell basis measurement on reflecting qubits to obtain the results of the comparison. Further, analysis results show that this scheme can avoid outside and participant attacks and its’ qubit efficiency is better than the other two protocols mentioned in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call