Abstract

Electronic nose (E-nose), as a device intended to detect odors or flavors, has been widely used in many fields. Many labeled samples are needed to gain an ideal E-nose classification model. However, the labeled samples are not easy to obtain and there are some cases where the gas samples in the real world are complex and unlabeled. As a result, it is necessary to make an E-nose that cannot only classify unlabeled samples, but also use these samples to modify its classification model. In this paper, we first introduce a semi-supervised learning algorithm called S4VMs and improve its use within a multi-classification algorithm to classify the samples for an E-nose. Then, we enhance its performance by adding the unlabeled samples that it has classified to modify its model and by using an optimization algorithm called quantum-behaved particle swarm optimization (QPSO) to find the optimal parameters for classification. The results of comparing this with other semi-supervised learning algorithms show that our multi-classification algorithm performs well in the classification system of an E-nose after learning from unlabeled samples.

Highlights

  • Pollution attracts more and more attention as people grow more highly aware of air quality issues.As a result, it is important to detect indoor air pollution effectively

  • Many effective feature extraction methods have been applied for Electronic nose (E-nose); for example, principal component analysis (PCA) [20,21] uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables, which can significantly reduce the dimensions of target samples

  • The rest of this paper is organized as follows: Section 2 introduces the E-nose system, experimental procedure, and the data set of this paper; Section 3 presents the theory of the S4VMs technique and our enhancement algorithm; Section 4 describes the results of multi-classification S4VMs (M-S4VMs) while it is used for training the classification system of E-nose to distinguish target pollution gases, and to compare with other semi-supervised algorithms

Read more

Summary

Introduction

Pollution attracts more and more attention as people grow more highly aware of air quality issues. Many effective feature extraction methods have been applied for E-nose; for example, principal component analysis (PCA) [20,21] uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables, which can significantly reduce the dimensions of target samples Another way to enhance the efficiency of an E-nose system is to use advanced analysis algorithms. The rest of this paper is organized as follows: Section 2 introduces the E-nose system, experimental procedure, and the data set of this paper; Section 3 presents the theory of the S4VMs technique and our enhancement algorithm; Section 4 describes the results of multi-classification S4VMs (M-S4VMs) while it is used for training the classification system of E-nose to distinguish target pollution gases, and to compare with other semi-supervised algorithms.

E-Nose System and Experiments
M-S4VMs Technique
Multi-Classifier Strategy
Results and Discussion
Accuracy
Total accuracy rate rate of the twotwo algorithms with different unlabeled
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call