Abstract
AbstractThe semi‐resolved Computational Fluid Dynamics coupled with the Discrete Element Method (CFD‐DEM) method has emerged as approach to modeling particle‐fluid interactions in granular materials with high particle size ratios. However, challenges arise from conflicting requirements regarding the CFD grid size, which must adequately resolve fluid flow in the pore space while maintaining a physically meaningful porosity field. This study addresses these challenges by introducing a two‐grid mapping approach. Initially, the porosity field associated with fine particles is estimated using a coarse CFD grid, which is then mapped to a dynamically refined grid. To ensure conservation of total solid volume, a volume compensation procedure is implemented. The proposed method has been rigorously verified using benchmark cases, showing its high computational efficiency and accurate handling of complex porosity calculations near the surface of coarse particles. Moreover, the previously unreported impact of the empirical drag correlation on fluid‐particle force calculations for both coarse and fine particles has been revealed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.