Abstract

A novel synthetic fully long-term resorbable self-gripping mesh has been recently developed to reinforce soft tissue where weakness exists during ventral hernia repair open procedures. This resorbable mesh is a macroporous, knitted, poly-L-lactide, poly-trimethylene carbonate copolymer monofilament mesh with the ProGrip™ technology, providing grips on one side of the mesh. A new poly-L-lactide, poly-trimethylene copolymer was developed to provide the required features for mechanical support during at least 20 weeks covering the critical healing period, including resistance to fatigue under cyclic loading conditions, as it occurs in patients. The yarns and mesh initial physical and biomechanical properties were characterized. Then, the mesh mechanical strength was evaluated over time. The mechanical properties of the proposed mesh were found to be above the generally recognized threshold value to mechanically support the repair site of a hernia over a 20-week period during in-vitro cyclic loading test. The mesh performance was evaluated in vivo using a published preclinical porcine model of hernia repair at 4-, 12- and 20-weeks post implantation. The burst strength of the hernia repair sites reinforced with the new mesh were higher at 4 & 12 weeks and comparable at 20 weeks to the one of the native abdominal walls. At all time points, the mesh was well tolerated with moderate inflammation and was fast integrated in the abdominal wall at 4 weeks. Particularly, the grips were nicely engulfed in the newly formed connective tissue. They must facilitate the anchoring of the mesh by their extension from the mesh and their mushroom shape. The preclinical data of the self-gripping resorbable mesh suggests that it has all the favorable characteristics for future clinical use during ventral hernia repair open procedures.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call