Abstract

Due to the constraint of cost and size for mobile wireless communication terminals, many orthogonal frequency division multiplexing (OFDM)-based systems required the same crystal driving the sampling and the channel frequencies, which leads to the challenge of a more comprehensive sampling clock synchronization scheme needed. In this article, the effect of sampling clock error on the system performance was analyzed by dividing it into sampling clock frequency offset (SFO) and sampling timing error (STE) firstly. After that, we proposed a two-stage scheme of sampling clock synchronization based on theoretical derivation: the preliminary SFO was jointly acquired with the carrier frequency offset by using the improved preamble-aided algorithm firstly, the timing drift resulted from residual SFO and STE was tracked based on a phase looped lock in the second stage. The deviation properties of the estimation were achieved theoretically, which reveals that both the estimating variances of SFO and timing drift are in inverse proportion to signal-to-noise ratio and grow linearly by the number of total subcarrier. The results of the simulation show that the proposed synchronization scheme can introduce preferable tracking and robust synchronizing performance for this kind of OFDM-based system.

Highlights

  • Underwater acoustic channels are characterized by severe bandwidth limitations, long inter-symbol interference (ISI) spans, and large Doppler spreads, which lead to significant challengers for reliable communications

  • On the basis of this, we propose a complete sampling clock synchronization scheme that composed by acquisition stage and tracking stage to realize the estimation and correction of sampling clock error

  • In the first 100 number of frames, the phase looped lock (PLL) is initialized using the first group parameters, of which the beta filter value is set to zero for considering that the timing error is mainly caused by the inaccurate of symbol timing at the beginning of synchronization, so sampling clock frequency remains major error

Read more

Summary

Introduction

Underwater acoustic channels are characterized by severe bandwidth limitations, long inter-symbol interference (ISI) spans, and large Doppler spreads, which lead to significant challengers for reliable communications. Owning to the advantages of high spectral efficiency and robustness against channel fading, orthogonal frequency division multiplexing (OFDM) has been applied in modern communication system extensively such as WLAN, WiMAX, LTE, and DVB-T. OFDM is a good alternative transmission scheme for underwater communication that both remedies the problem of ISI and provides low complexity solutions. OFDM is sensitive to inter-carrier interference (ICI) caused by channel variations. Underwater channels vary fast due to the large ratio of the platform motion relative to the sound propagation speed. Even with stationary transmitters and receivers, significant ICI could still exist due to wave action and water motion. One of the solutions for eliminating ICI is to estimate and correct

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call