Abstract
This paper proposes a pilot-aided joint channel estimation and synchronization scheme for burst-mode orthogonal frequency division multiplexing (OFDM) systems. The scheme eliminates the need of an IFFT block while keeping the low number of parameters to be estimated for low complexity without sacrificing the performance and convergence speed. For fast convergence and high performance, we develop a linearized cost function of the carrier frequency offset (CFO), sampling clock frequency offset (SFO) and channel impulse response (CIR) coefficients based on received signal samples and pilot tones in frequency domain and the corresponding recursive least square (RLS) estimation and tracking algorithm. For channel responses, CIR coefficients are estimated to benefit their low number and then transformed to the channel transfer function in order to keep low complexity. The ICI introduced by rotation due to CFO and SFO is analyzed and modeled, and a simple maximum-likelihood (ML) scheme based on the preamble is developed for coarse estimation of initial CFO and SFO values to be used in suppression of dominant ICI effects and in fine RLS estimation and tracking. Simulation results demonstrate that, in large practical ranges of CFO and SFO values, the proposed pilot-aided joint channel estimation and synchronization scheme provides a receiver performance remarkably close to the ideal case of perfect channel estimation and synchronization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.