Abstract
A novel sample preparation procedure relying on Solid Phase Extraction (SPE) combining different sorbent materials on a sequential-based cartridge was optimized and validated for the enrichment of 117 widely diverse contaminants of emerging concern (CECs) from surface waters (SW) and further combined chemical and biological analysis on subsequent extracts. A liquid chromatography coupled to high resolution tandem mass spectrometry LC-(HR)MS/MS protocol was optimized and validated for the quantitative analysis of organic CECs in SW extracts. A battery of in vitro CALUX bioassays for the assessment of endocrine, metabolic and genotoxic interference and oxidative stress were performed on the same SW extracts. Satisfactory recoveries ([70–130]%) and precision (< 30%) were obtained for the majority of compounds tested. Internal standard calibration curves used for quantification of CECs, achieved the linearity criteria (r2 > 0.99) over three orders of magnitude. Instrumental limits of detection and method limits of quantification were of [1–96] pg injected and [0.1–58] ng/L, respectively; while corresponding intra-day and inter-day precision did not exceed 11% and 20%. The developed procedure was successfully applied for the combined chemical and toxicological assessment of SW intended for drinking water supply. Levels of compounds varied from < 10 ng/L to < 500 ng/L. Endocrine (i.e. estrogenic and anti-androgenic) and metabolic interference responses were observed. Given the demonstrated reliability of the validated sample preparation method, the authors propose its integration in an effect-directed analysis procedure for a proper evaluation of SW quality and hazard assessment of CECs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.