Abstract

Urea abatement has been a prominent challenge for UPW production. This research proposed a productive strategy combining pre-chlorination and VUV/UV processes under acidic conditions to settle this problem. This study first revealed the reaction kinetics between urea and free chlorine in a large pH range from 2.5 to 9.6, where the reaction constant rate varied from 0.06 to 0.46 M−1·s−1. Substitution reaction mediated by Cl2 was the dominant process at low pH (pH<3). The differences of dominant pathways resulted in the differences in reaction products: The detected concentration of dichloramine at pH 2.5 was twice that at pH 4.5 and 6.5. Further, this study found that pre-chlorination/VUV/UV process could achieve the thorough removal of 2-mg/L urea with chlorination of less than 5 min and VUV/UV irradiation of less than 200 mJ/cm2. Chloride ions, low pH, and higher chlorine dosage were found to be the positive factors to improve urea removal efficiency in pre-chlorination/VUV/UV process. The reaction rate constants between chlorourea with·OH and·Cl were calculated to be 3.62 × 107 and 2.26 × 109 L·mol−1·s−1, respectively.·Cl,·OH and photolysis contributed 60.5 %, 22.9 % and 16.6 % in chlorourea degradation, respectively. Pre-chlorination/VUV/UV achieved a DOC removal efficiency of 78.5 %. And nitrogen in urea was converted into inorganic nitrogenous compounds. Finally, compared with direct VUV/UV/chlorine and VUV/UV/persulfate processes, this process saved more than 70 % of energy in VUV/UV unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.